Stepping, Strain Gating, and an Unexpected Force-Velocity Curve for Multiple-Motor-Based Transport

نویسندگان

  • Ambarish Kunwar
  • Michael Vershinin
  • Jing Xu
  • Steven P. Gross
چکیده

BACKGROUND Intracellular transport via processive kinesin, dynein, and myosin molecular motors plays an important role in maintaining cell structure and function. In many cases, cargoes move distances longer than expected for single motors; there is significant evidence that this increased travel is in part due to multiple motors working together to move the cargoes. Although we understand single motors experimentally and theoretically, our understanding of multiple motors working together is less developed. RESULTS We theoretically investigate how multiple kinesin motors function. Our model includes stochastic fluctuations of each motor as it proceeds through its enzymatic cycle. Motors dynamically influence each other and function in the presence of thermal noise and viscosity. We test the theory via comparison with the experimentally observed distribution of step sizes for two motors moving a cargo, and by predicting slightly subadditive stalling force for two motors relative to one. In the presence of load, our predictions for travel distances and mean velocities are different from the steady-state model: with high motor-motor coupling, we predict a form of strain-gating, where-because of the underlying motor's dynamics-the motors share load unevenly, leading to increased mean travel distance of the multiple-motor system under load. Surprisingly, we predict that in the presence of small load, two-motor cargoes move slightly slower than do single-motor cargoes. Unpublished data from G.T. Shubeita, B.C. Carter, and S.P.G. confirm this prediction in vivo. CONCLUSIONS When only a few motors are active, fluctuations and unequal load sharing between motors can result in significant alterations of ensemble function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Force-velocity relations for multiple-molecular-motor transport.

A transition rate model of cargo transport by N molecular motors is proposed. Under the assumption of steady state, the force-velocity curve of multimotor system can be derived from the force-velocity curve of a single motor. Our work shows, in the case of low load, that the velocity of multimotor system can decrease or increase with increasing motor number, which is dependent on the single mot...

متن کامل

External forces influence the elastic coupling effects during cargo transport by molecular motors.

Cellular transport is achieved by the cooperative action of molecular motors which are elastically linked to a common cargo. When the motors pull on the cargo at the same time, they experience fluctuating elastic strain forces induced by the stepping of the other motors. These elastic coupling forces can influence the motors' stepping and unbinding behavior and thereby the ability to transport ...

متن کامل

Robust transport by multiple motors with nonlinear force-velocity relations and stochastic load sharing.

Transport by processive molecular motors plays an important role in many cell biological phenomena. In many cases, motors work together to transport cargos in the cell, so it is important to understand the mechanics of the multiple motors. Based on earlier modeling efforts, here we study effects of nonlinear force-velocity relations and stochastic load sharing on multiple motor transport. We fi...

متن کامل

The Effects of Stator Compliance, Backs Steps, Temperature, and Clockwise Rotation on the Torque-Speed Curve of Bacterial Flagellar Motor

Rotation of a single bacterial flagellar motor is powered by multiple stators tethered to the cell wall. In a " power-stroke " model the observed independence of the speed at low load on the number of stators is explained by a torque-dependent stepping mechanism independent of the strength of the stator tethering spring. On the other hand, in models that depend solely on the stator spring to ex...

متن کامل

Productive cooperation among processive motors depends inversely on their mechanochemical efficiency.

Subcellular cargos are often transported by teams of processive molecular motors, which raises questions regarding the role of motor cooperation in intracellular transport. Although our ability to characterize the transport behaviors of multiple-motor systems has improved substantially, many aspects of multiple-motor dynamics are poorly understood. This work describes a transition rate model th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008